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Abstract 

 

It is a widespread assumption in philosophy of science that representations of data are not 

explanatory—that they are mere stepping stones towards an explanation, such as a representation 

of a mechanism.  I draw on instances of representational and explanatory practice from 

mammalian chronobiology to suggest that this assumption is unsustainable.  In many instances, 

biologists employ representations of data in explanatory ways that are not reducible to 

constraints on or evidence for representations of mechanisms.  Data graphs are used to represent 

relationships between quantities across conditions, and often these representations are necessary 

for explaining particular aspects of the phenomena under study.  The benefit of the analysis is 

two-fold.  First, it provides a more accurate account of explanatory practice in broadly 

mechanistic investigation in biology.  Second, it suggests that there is not an explanatorily 

“fundamental” type of representation in biology.  Rather, the practice of explanation consists in 

the construction of different types of representations and their employment for distinct 

explanatory purposes.   

 

Keywords: Data graphs; Explanation; Explanatory Relations; Mechanism Diagrams; Scientific 
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1.  Introduction 

 

Explanation in biology consists in showing how a biological system produces a phenomenon of 

interest.  According to the new mechanistic philosophers of science (Bechtel & Richardson, 

1993; Machamer, Darden, & Craver, 2000), explanations are couched as descriptions of 

mechanisms—organized systems of biological parts performing specific operations, which 

interact causally to produce the phenomenon.  This perspective is a major departure from 

traditional, deductive-nomological views of explanation, and some mechanists (among others 

less directly concerned with mechanisms) make a further departure in arguing that visual 

representations can be a key vehicle for explanation (Bechtel & Abrahamsen, 2005; Griesemer, 

1991; Machamer et al., 2000; Perini, 2005; Ruse, 1990; Sheredos, Burnston, Abrahamsen, & 

Bechtel, 2013).  Generally, mechanists have focused on “mechanism diagrams,” which show the 

parts, operations, and organization of the mechanism.  Indeed, biologists often present 

explanations in mechanism diagrams.  

 

I claim that mechanism diagrams, while important for explaining biological phenomena, are not 

the only kind of visualization serving this goal.  Often, in initial decomposition of a system, 

biologists pursue the kinds of epistemic activities that mechanists have rightly characterized as 

positing parts and operations, and that culminate in mechanism diagrams.  However, mechanists 

have not paid attention to some other common explanatory practices, which more frequently 
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employ data graphs in explanatory ways, and which biologists often pursue following initial 

division of a system into parts and operations.  In particular, data graphs show relations between 

quantities over time and/or across conditions, and representing these relations is often required to 

show how some aspect of the phenomenon is produced.  Even if the parts, operations, and 

organization of the mechanism are known, an explanation is often insufficient unless quantitative 

relationships are also represented.  When quantitative relationships are represented in an 

explanatory way, I call them “explanatory relations.”  Looking at how data graphs are employed 

in active biological research highlights these elements of practice.  

 

Mechanists, with few exceptions (Burnston et al., 2014), have missed or misconstrued the 

explanatory import of data graphs.  It is not obvious why this has been the case, since there is 

relatively little overall discussion of data representation in the mechanist literature.  It may be 

due in part to an overreliance on textbook accounts of biological discovery, which often paint an 

accepted mechanism diagram as the end-stage of explanation.  Another possible reason is a 

tendency towards a kind of explanatory fundamentalism—the assumption that some particular 

kind of description, representation, or entity is the fundamentally explanatory kind, and that all 

epistemic work in research must be geared towards establishing the type that does the explaining.  

Some mechanists argue that mechanistic models are explanatorily fundamental, and that 

representations other than those describing mechanisms, be they verbal descriptions, 

computational models, network models, or what-have-you, are explanatory only to the extent 

that they map directly to a mechanistic explanation (for examples, see Craver, 2006; Craver & 

Kaplan, 2013).  There is resistance to explanatory fundamentalism—Bechtel and Abrahamsen 

(2010), for instance, suggest in several places that mechanistic models must be conjoined with 

models representing the mechanism as a dynamical system.  Pluralists of different stripes suggest 

that multiple models are necessary for explanation (e.g., Green, 2013).   

 

Clearly, there are some complex issues at foot here.  This is largely because these debates often 

discuss, in one go, the representations that scientists use to explain, the role of models in the 

explanation, and/or the metaphysics underlying the explanation.  Here, I am only interested in 

representation (see section 4 for a discussion of how the representational question relates to the 

others).  Explanatory fundamentalism vis-à-vis the question of representation argues that there is 

a type of representation that is fundamentally explanatory, and that other kinds of representation 

play subsidiary roles in establishing the genuinely explanatory kind.  This kind of 

“representational fundamentalism” would explain the relationship that mechanists have posited 

between data representation and representation of a mechanism—data graphs are thought to 

provide evidence for or to constrain mechanistic hypotheses, but are not thought to themselves 

be explanatory.  I argue that these views underdescribe the use of data graphs in mechanistic 

research, and that in some cases data graphs serve genuinely explanatory roles.   

 

As mentioned, it is difficult to pin representational fundamentalism on anyone directly.  As such, 

I have articulated it more as a foil than in an attempt to criticize any particular theorist.  Arguing 

against representational fundamentalism points the way to a positive view of how representations 

are employed in explanation.  The view I propose claims that giving an explanation in a given 

case consists in coordinating distinct representations with distinct explanatory roles.  My account 

is thoroughly pragmatic--I am not offering an analysis of either "representation" or "explanation" 
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as such.  However, I think we can learn something deep about the nature of explanation by 

understanding the relative roles that distinct representations play in accounting for phenomena.   

 

I will discuss a detailed case study from mammalian chronobiology, which I claim can only be 

adequately described if data graphs are taken to be playing a key explanatory role in the 

investigation.  I will argue that the role of the data graphs is dissociable from those played by 

those of mechanism diagrams and causal graphs in the investigation.  That is, the specific content 

of the data graphs serves an explanatory role that is needed for the explanation, not present in 

other representations, and not dependent on their specific content for fulfilling its role.   

 

I will pursue only one case study in order to thoroughly distinguish the representations and the 

relationships between them  However, I take the case to be exemplary of a wide range of 

explanatory uses of data representations, and I discuss other examples elsewhere (Burnston, in 

prep). I will start in section 2 by describing the representational differences between data graphs 

and mechanism diagrams in the context of mammalian chronobiology. I will then give the case 

study in section 3 and argue for the distinctive explanatory role of data graphs. In section 4, I will 

give a general view of the relative explanatory roles of data graphs and mechanism diagrams, 

and situate the view amongst the related debates in the mechanist literature. Section 5 concludes. 

 

2.  Diagrammatic Representation 

 

Mechanistic explanation consists in describing the physical system responsible for an 

explanandum phenomenon (Craver, 2007).  In a successful explanation, standardly construed, 

the system is decomposed into parts and operations, and the explanation shows how those parts 

and operations are organized to produce the phenomenon in question.  A part is an entity or type 

of entity.  An operation is a type of interaction between entities—standard examples include 

binding, activating, regulating, and inhibiting.  Organization includes both the spatial locations 

of parts and operations, and the temporal ordering of operations.  It is often important, for 

instance, that one operation occur before another, at a certain place, so that the second operation 

can occur.  I will use the phrase “mechanistic posits” to refer to hypotheses about and 

representations of parts, operations, and organization in these traditional senses.  

 

Mechanistic understanding in the field of chronobiology has advanced rapidly in the last 15 

years.  One of the field’s primary explanandum phenomena is circadian rhythms—roughly 24-

hour, endogenously generated physiological rhythms occurring in a wide range of organisms, 

which regulate an array of processes ranging from sleep and activity patterns, to metabolism, to 

gene transcription across the entire genome.  Rhythmicity, in mammals and many other 

organisms, is due to internal “clock” mechanisms, which in eukaryotes operate at several 

mechanistic levels.  The most basic timekeeping mechanisms are molecular clocks within 

individual cells, which are composed of interlocking feedback loops amongst gene products 

(mRNAs and proteins).  Circadian “time” is kept in the oscillating quantities of gene products—

when the clock is working properly, these oscillate over a roughly 24 hour period, thus providing 

a timing signal that can regulate other processes. 

 

In abstract terms, the basic mechanism works as follows: proteins from the “positive loop” cause 

transcriptional activation of the “negative loop” genes, leading to increasing quantities of 
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negative loop gene products.  The negative loop proteins then feed back and inhibit their own 

transcription.  When negative loop proteins degrade, the inhibition is released, and activation can 

resume, causing levels to increase again.  With the appropriate rates of transcription, translation, 

and degradation, the mechanism can produce oscillations of roughly 24 hours.  In mammals, the 

positive loop genes are Bmal1 and Clock, and the negative loop genes are Cryptochrome (Cry) 

and Period (Per).  The standard “mechanism schema” (Machamer, Darden, & Craver, 2000) of 

the clock is diagrammed in the figure below.  

 

 
 

Figure 1.  The mammalian intracellular clock mechanism.  Modified from Wang, Zhang, Xu, 

and Tischkau (2014). 

 

Genes and gene promoters (the sites where proteins bind and produce their effects) are shown as 

rectangles; proteins are shown as ovals. The positive loop proteins, after transcription, dimerize 

and are translocated into the nucleus, where they bind to the E-boxes of Cry and Per, activating 

their transcription.  The negative loop proteins undergo a similar process before binding to the 

positive loop proteins at the E-box, halting theiractivation of the negative loop genes.  The 

diagram, in addition, shows the other elements of the positive loop—of particular interest is the 

Rev-Erbα gene, which is activated by the positive loop proteins, and whose protein feeds back to 

inhibit Bmal1 transcription at the RRE promoter, leading to oscillating quantities of Bmal1 

products.  (The ROR protein plays a supporting role in the positive loop, and I will not discuss it 

here.)  The operation of activation is shown via straight arrows, transcription by bent arrows, 

translation by dashed arrows, and inhibition by flat-headed lines; the operations of dimerization 

and binding are shown via spatial contiguity.   

 

There are several more aspects to the molecular clock in mammals, and more complete 

mechanism diagrams include more parts and operations.  One particularly important aspect is 

that each of the clock genes has paralogs—structurally similar genes with similar overall 

functions (e.g., in the positive or negative loops), but which can play slightly different roles in 

certain circumstances.  The paralog of Clock is Npas2, of Rev-erbα is Rev-erbβ, of Cry1 is Cry2, 

etc.  Per1 has two paralogs, Per2 and Per3.  Moreover, while I will only discuss intracellular 

clock mechanisms here, it should be kept in mind that in mammals the clock is in fact a multi-
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level mechanism in which a central pacemaker (the suprachiasmatic nucleus in the 

hypothalamus) regulates biological time throughout the body. 

 

A representation is “explanatory” when it shows, perhaps in part, how a phenomenon is 

produced.  Mechanists often claim that such diagrams as Figure 1 are explanatory, because they 

show the organization of parts and operations that leads to the phenomenon of rhythmicity.  The 

resources the diagram provides are due to its particular format and means of representation—

contrary to linguistic representations, for example, the diagram retains a spatial format to 

represent spatial relations within the mechanism, and uses this property to represent the 

organization of operations.  As such, one can mentally simulate the sequence of operations in the 

mechanism, moving from one to another to see how the phenomenon comes about due to the 

“productive continuity” (Machamer et al., 2000) of the parts and operations represented.   

 

One of the strengths of the mechanist approach is that it can account for some important aspects 

of explanatory practice in biology.  Biologists do often in fact often offer diagrams like Figure 1 

as explanatory representations.  Mechanists, however, have historically not granted any 

explanatory role to data graphs, despite the fact that they vastly outnumber mechanism diagrams 

in biological research literature, and despite their very different structure, which suggests that 

they might provide other resources for understanding how phenomena are produced.  Consider 

the diagrams in Figure 2.   

 

 
 

Figure 2.  (Left) A mechanism diagram portraying the operation performed by BMAL1 on the 

Per paralogs.  (Right) Bunger et al.’s (2000) data, which established the relationship. 

 

The left panel is a diagram of the activation of Per1 and its paralog Per 2 by BMAL1, the protein 

product of the positive loop gene Bmal1.  The right panel includes two data graphs from Bunger 

et al. (2000), the paper which is standardly credited with having established the activation 

relationship.  What are the relevant differences?     
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The mechanism diagram on the left uses symbols to explicitly classify the interaction between 

BMAL1 and the Per paralogs as an activation operation, and doing so has a variety of benefits.  

For instance, it shows the interaction to be alike with other activation operations performed by 

other parts on other targets. However, symbolizing in this way means that the diagram cannot 

convey quantitative properties regarding the processes it represents.  No information, for 

instance, about the rate or levels of activation, the quantities of Per products transcribed, or the 

timing of the rhythms is included in the diagram.  Data graphs are the opposite: they dedicate 

their spatial dimensions to showing particular quantitative values, and therefore can only indicate 

types of parts or operations via labels or captions.  The data graphs in the figure above plot 

particular results from a knockout condition compared to wild type.  In the graph, each point 

represents a measured value of Per mRNA quantities in clock cells (Per1 at top, Per2 at bottom).  

Filled dots, connected by solid lines, represent quantities taken from wild type SCN cells.  Open 

dots, connected by dashed lines, represent Per mRNA quantities (I will generally refer to 

mRNAs as the gene name preceded by ‘m’, as in ‘mPer’) in cells from Bmal1 knockout mice.  

Each measurement is represented as occurring at a specific time—measured in the number of 

hours after the animal was exposed to constant darkness (this is done generally to dissociate the 

internal properties of the clock mechanism from its responses to light).1   

 

A first pass at the distinction, then, is that the data graphs on the right display specific 

quantitative values, while the ones on the left don’t.  Arguing that the latter are explanatory, 

whereas the former aren’t, then, means that something explanatory is gained, and nothing 

explanatory lost, by representing the system in terms of parts and operations rather than in terms 

of specific quantities.  And conversely, arguing against the claim, or at least against its 

universality, requires pointing to explanatory contexts in which the quantitative aspects of the 

representation cannot be omitted without explanatory loss.  In the next sections I will discuss 

such a use.   

 

There are a few more things to note about the data graphs such as those in Figure 2.  First, they 

represent specific data patterns over time and across conditions.  These allow for comparisons of 

quantities to reveal properties such as relative peaks, periods, and phases, as well as to track how 

these comparisons vary depending on the condition.   While temporal relationships are highly 

important in chronobiology, I will primarily focus on diagrams that represent quantities across 

conditions in this paper (see Burnston, in prep], for a discussion of the importance of data graphs 

in representing phase relationships).  Second, there are a variety of statistical techniques that go 

into the construction and employment of data graphs—one will notice the error bars 

superimposed on the dots in the data graphs in figure 2, and the stars representing statistically 

significant differences between values in the knockout and wild type conditions.  A full 

treatment of the relationship between statistical measures and data graphs is outside the scope of 

my project here; for now, provisionally, the statistical tests can be seen as a justificatory tool for 

employing the representation of the quantitative relationships shown in the data graph.   

                                                            
1 Data were collected via in-situ hybridization, a method in which a fluorescent tracer is affixed to certain mRNAs.  

The units on the X-axis reflect detectable fluorescence, thus signaling the quantity of mRNA.  This is similar in the 

data graphs in other sections, although different techniques involve different units.  The light/dark bars in between 

the graphs represent the animals’ standard activity period during their “subjective day” in the period covered by the 

light bar, and the inactive period in the subjective night in the times covered by the dark bar.  Light/dark bars can 

also be used to show the external light schedule. 
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In sum, I take data graphs to be used to represent quantitative relations (QRs) in the mechanism 

being studied—particular values of measureable quantities, where often these are compared over 

time and/or across conditions.  For instance, the phase relationship between mPer1 and mPer2 is 

a property of the relative quantitative patterns shown in the graph, and is thus a paradigm 

example of a QR.  The relationship, of course, only holds in the WT condition—it does not occur 

in the knockout.  Moreover, the relationship between mPer1 quantities across the two conditions 

is itself a QR.  That is, the quantity of mPer1 exhibits the pattern shown by the solid line in the 

WT condition, and the dashed line in the knockout condition.  A representation of a QR is 

explanatory when the quantitative, temporal, and/or contrastive properties it conveys are needed 

to give a full account of how an explanandum phenomenon comes about—that is, when 

scientists must represent the QR to sufficiently meet an explanatory goal.  When a QR is 

explanatory in this sense, I call it an explanatory relation (ER).2  An ER can, potentially, hold 

between any number of quantities in a system, and often discovering ERs involves creative 

decisions about what quantities to measure in what conditions (Burnston et al., 2014).  Often, 

ERs fall into types—some of these include being “in-phase” or being “proportional.”  However, 

in order to be an ER, a type must be implemented in particular system components, occurring 

across particular conditions and/or particular times. Data graphs are used to represent the 

relationships that hold between components in the mechanism under particular conditions. 

 

Unsurprisingly, given the little attention to these representations in the literature, QRs are a bit of 

an odd duck when it comes to the explanatory categories that mechanists have discussed.  On the 

one hand, on a broadly interventionist account of causation, the relationships conveyed in data 

graphs are often are causal—there is a systematic variation between the manipulated quantities 

and the observed quantities.  On the other hand, simply this observation doesn’t meet many of 

the conditions that mechanists take to be important for giving explanations.  For instance, 

Woodward (2010, 2013) adds on the conditions that explanatory causal relationships should be 

stable and invariant.  There should be a range of conditions in which the observed relationship 

holds, and they should hold stably in those conditions.   Explanatory causal relationships should 

be specific and direct.  Both Woodward (2010) and Craver (2007) stress the norm that full 

explanations should fill in gaps between indirect causal influences (cf. Glennan, 2002), and 

determine whether the effect is due solely to the posited cause.  The data graph, due to its 

representing particular quantities across particular conditions, doesn’t convey any of these 

potentially relevant properties of the relationship.  Moreover, one might notice QR’s simply by 

contrasting conditions of observation, without physically manipulating the system (although 

showing that a certain pattern is necessary for a phenomenon to occur often involves 

manipulating it).  So, it seems like any potentially explanatory role for QRs doesn’t depend 

primarily on their being causal relationships (see section 4 for more discussion).  More 

importantly, focusing the properties of causal relationships distracts attention from what I do take 

to be the most important part of the representation, namely the specific pattern in the represented 

                                                            
2 I will be somewhat loose in talking about a representation of a relation providing an explanation, versus the 

relation itself providing it.  Some mechanists are proponents of the ontic view of explanation (e.g., Craver, 2007), 

which holds that, ultimately, explanations are themselves in the world.  Others (e.g., Bechtel & Abrahamsen, 2005) 

hold the epistemic view, on which representations explain, and the world itself does not.  I take no stand on this 

debate here.  An ontic theorist will have to hold that it is only the ER as it obtains in the world that explains, while 

an epistemicist will have to hold that only the representations do.  I will speak both ways as convenient; both ontic 

and epistemic theorists should feel free to regiment the meaning as they see fit.  
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data.  My preferred construal of these relationships is thus along the lines of Dennett’s (1983) 

“real patterns”—they are recognizable patterns occurring in certain observable conditions, where 

the types of patterns and conditions that are relevant depend on what one is trying to explain.3   

 

The shortcomings of data graphs for representing causal relationships have perhaps informed the 

limited roles that mechanists have granted to them.  Representations of data are standardly 

posited to provide evidence for or constrain mechanistic posits.  Bechtel and Abrahamsen (2005) 

suggest that the data given in the results section of a paper provide evidence for the explanatory 

mechanism diagram advanced in the discussion section.4  Machamer, Darden, and Craver (2000) 

make a similar claim.  In Craver’s (2007) view, the results of experiments provide evidence that 

specifies the explanatorily relevant causal relationships in the mechanism, which are described as 

operations.  Darden and Craver (2002) suggest a variety of ways in which quantitative details can 

constrain mechanistic positing, including by specifying the rate and duration in which operations 

occur.  For instance, if a phenomenon involving two mechanistic operations occurring 

sequentially takes one second, and it is then established that the first operation occurs in 800ms, 

posits regarding the second operation had better pick one that occurs within 200ms. The rates, in 

this case, are not explanatory in themselves, but only constraints on positing specific operations 

and what order they stand in.  Similarly, Craver (2007) stresses the use of contrasts between 

conditions in a variety of cases, but only for pragmatic purposes.  Submitting a proposed 

mechanism to different conditions, for instance, can help tease apart “how-possibly” from “how-

actually” models, but for Craver the contrasts between conditions are not themselves 

explanatory. 

 

The evidence and constraint views of data representations presuppose that data graphs play a role 

in establishing the representations—namely, mechanism diagrams—which explain phenomena, 

but are not themselves part of the explanation.  This is certainly right in some cases.  Data graphs 

are often used for evidential or constraining purposes (as in the graph in Figure 2), as well as for 

a variety of other non-explanatory purposes (such as to validate a method or rule out an artifact).  

However, claiming that the evidence and constraint view exhausts the function of data graphs 

entails a view of explanatory practice which I will claim is false.  On the evidence and constraint 

view,  data representations (e.g., in new research papers) should be employed primarily in either 

generating a mechanism schema or modifying an existent one—for instance by challenging 

accepted posits of parts, operations, and organization, or by adding new elements to existing 

mechanism schemas to more thoroughly fill out the explanation (Craver, 2007; Woodward, 

2010).  In the case study below, I argue that in active research, new data is often represented 

without the goal of modifying a mechanism schema, but instead in order to show QRs between 

properties of the mechanism that are necessary for explaining particular aspects of the 

phenomenon.  That is, they are used to represent ERs. 5 

                                                            
3 I don’t want to bring all of Dennett’s analysis on board, however.  Dennett identifies his real patterns with 

regularities or generalizations, and I think this is by no means an obvious or necessarily desirable identification to 

make.  See section 4, and [Burnston, in prep]. 
4 Bechtel and Abrahamsen have recently modified their view to give a greater explanatory role to data graphs 

(Burnston et al., 2014), and I aim to give further support to this move here. 
5 I will discuss a case in which the research practice was geared specifically towards establishing ERs, in order to 

clearly distinguish their explanatory roles.  In a lot of scientific practice, however, the interplay between data and 

mechanism representations is extremely close and multi-faceted.  See Burnston et al. (2014) for a detailed case study 

of how the two forms of representation contribute to the development of an explanation in a single research paper. 
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3.  Data Graphs and Explanatory Relations 

 

The canonical model of the clock for mammals, including all of the major components and 

operations, as well as the standard organization shown in Figure 1, was in place by 2005 (Zhang 

& Kay, 2010).  While there are some exceptions (see, e.g., Ye, Selby, Ozturk, Annayev, & 

Sancar, 2011), the standard mechanism schema has largely gone unchallenged.  In rather short 

order, however, mammalian chronobiologists turned their attentions from establishing 

mechanistic posits to discovering ERs.  Since these practices, revealed in explanatory usage of 

data graphs, do not involve challenging, modifying, or extending the mechanism schema of the 

clock, the evidence and constraint views leave out some genuinely explanatory activity. 

 

A particularly clear example comes from Baggs et al. (2009), who used small-interfering RNA 

(siRNA) to perform fine-grained knockdowns of gene products in the clock.  SiRNA degrades 

specifically targeted mRNAs.  The effect is dose-dependent—the more siRNA inserted, the 

greater the decrease in the mRNA, and thus in the protein coded for by the mRNA.  Quantitative 

measurements can then be taken to show the effect of these knockdowns on other components of 

the system.6   

 

The authors specifically addressed the explanandum phenomenon of compensation.  A variety of 

compensatory effects occur in gene regulation networks, in which genetic processes are 

maintained despite fluctuations in the quantities of key components of the system.  In the 

circadian case, compensation means that rhythmic processes are maintained despite variation in 

internal or external conditions.  At the molecular level, compensation is exhibited when rhythmic 

gene products retain rhythmicity despite variation in the levels of other components.  Baggs et al. 

use siRNA manipulations, and the relationships uncovered, to explain how this phenomenon 

occurs.  They use data graphs to show a variety of relationships between system components 

that, together, help to show how molecular rhythms are maintained across different knockdown 

levels.  Three examples of key ERs are shown below.  The bar graphs are color coded to reflect 

the increasing amounts of siRNA of a particular type inserted (as shown in the legends in the top 

left; the legend goes from least insertion at the top to greatest insertion at the bottom).  The 

quantities are represented relative to a baseline quantity of mRNA for each type (the ‘1’ in the 

scales on the left).   

 

                                                            
6 Measurements of mRNA levels were taken with quantitative PCR.  Gene expression levels were measured with 

bioluminescence reporters.  Both techniques involve the insertion of light-emitting biological reactants into the DNA 

of a particular gene, although they differ in a variety of respects.  I will not discuss these techniques in detail here.   
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Figure 3.  Data showing varieties of relationships between mRNA quantities in the mammalian 

clock.  From Baggs et al. (2009). 

 

On the top left is the result of siCry1 insertion on the levels of both mCry1 and mCry2.  As can 

be seen, increasing insertion decreases (as expected) levels of mCry1.  It also, however, 

increases levels of mCry2.  Moreover, this increase is proportional to the decrease of mCry1.  

Cry2 is a paralog of Cry1, and it is easy to see why proportional increase of paralogs in response 

to specific gene knockdowns could contribute to compensation.  Since paralogs have similar 

effects on similar targets, a proportional increase of one in response to knockdown of the other 

could produce an overall effect similar to normal conditions.  Proportional responses also occur 

between non-paralogous gene products.  The top right panel of Figure 3 shows the effect of 

knockdowns of mBmal1 on Rev-erbα and Rev-erbβ.  It would be expected from the standard 

mechanism schema given in Figure 1 that Rev-erb levels would decrease upon decrease of 

mBmal1, since BMAL1 proteins activate the Rev-erb genes.  However, the proportionality of the 

relationship is an important further fact.  To see this further, consider the bottom panel, where 

the effect of mClock knockdowns on the Per paralogs is shown.  Despite the fact that Clock 

products activate the Per genes—the same type of operation that Bmal1 performs on the Rev-erb 

genes—the quantitative relationship is different in this case.   While it is proportional, it is 

“fractionally proportional”—the slope of the relationship is fractional, rather than being close to 

one (I discuss the use of equations to characterize proportionality below).   

 

Baggs et al. discuss a variety of further types of relationships, but these will be enough to show 

how the representation of ERs allows them to explain compensation.  Consider the figure below:  
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Figure 4.  Compensation for mPer1 knockdown.  From Baggs et al. (2009). 

 

On the left is a line graph representing quantities of Bmal1 transcription under several levels of 

mPer1 knockdown, color coded according to the amount of siPer1 inserted.  The graph shows 

that Bmal1 expression retains rhythmicity (albeit with decreased amplitude) for several 

increasing increments of siPer1 insertion, thus exhibiting the explanandum phenomenon of 

compensation.  The explanation for compensation in this case is given in the diagram to the right, 

showing that, in response to Per1 knockdowns, both Bmal1 and Rev-erb transcription show 

proportional effects—Rev-erbβ increasing, Bmal1 decreasing.  The net result of these combined 

proportional relationships is to “balance” the quantity of Per1 products in the negative loop with 

those of Bmal1 in the positive loop.  Baggs et al. offer this balance as a key to understanding 

compensation in this case.  Recall that rhythmicity in the clock is the result of interlocking 

activities of the positive and negative loops.  As such, quantities in one loop being 

disproportionately larger than the other would interrupt the precise patterns of activation and 

inhibition that are needed to produce rhythmicity.  Thus a means for retaining balance between 

positive and negative loop products is important for compensation, and Baggs et al. offer the 

proportional relationships between mPer1 and mRev-erbβ, and between mRev-erbβ and 

mBmal1, as the means by which the balance is maintained despite the knockdown.  

Compensation is explained due to the particular patterns in quantitative relationships across 

conditions.  The proportional patterns of variation between mPer1 and mRev-erbβ, as well as 

between mRev-erbβ and mBmal1 help to explain how the pattern of balance between mPer1 and 

mBmal 1 occurs.  This pattern in turn helps explain compensation via balancing quantities in the 

positive and negative loops. 

 

Other instances of compensation are explained in a similar fashion—one slightly more 

complicated example is given below, in showing how Bmal1 rhythms are maintained in response 

to several levels of mClock knockdowns.   
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Figure 5.  Compensation for mClock knockdown.  From Baggs et al. (2009). 

 

In this case, the figure at the left shows that mBmal1 rhythms are maintained for a range of 

siClock levels (the wavy lines at bottom) until eventually increasing and becoming arrhythmic 

for very large quantities inserted.  While many gene responses are shown in the graph on the 

right, the important ones are Npas1, Bmal1, and the Per paralogs.  Npas1 is the paralog of Clock, 

and its mRNA shows proportional increase as mClock is depleted.  This corresponds with a 

proportional increase of Bmal1, mediated by proportional decrease of the Rev-erb genes which 

normally inhibit it.  The Per paralogs show the same fractional-proportional decrease shown in 

Figure 3 (bottom panel).  In this case, the “balance” that occurs between the positive and 

negative loop genes is between the overall positive loop genes and overall negative loop ones—

the increase of Bmal1 and Npas2, combined with the fractional-proportional decrease of the Per 

genes, keeps the overall quantities in balance.  Up to 70% decrease of mClock can be 

compensated for in this way.   

 

Details aside, what is important is the kind of reasoning displayed here, and how the data graphs 

contribute to the explanation.  Baggs et al. present the discovery of proportional relationships (of 

different types) between paralogous and non-paralogous genes as  set of additional explanatory 

facts—i.e., facts going beyond the accepted mechanism schema of the clock—about how the 

mammalian clock can exhibit compensation.  That is, it is not just the fact that the parts exhibit 

the operations and organization standardly attributed to them, but also that they respond to 

perturbations in the particular quantitative patterns that they do, that explains how compensation 

comes about.  In their summation, Baggs et al. “propose that the clock … combines … activator 

and repressor modules with various forms of proportionality to construct relays that generate 

complex gene expression responses to single gene perturbations” (2009, p. 0570).  That is, the 

proportional relationships must be represented in addition to facts about the mechanism schema 

in order to explain compensation at the molecular level.   

 

Nor is it coincidental that the assorted ERs are represented in data graphs.  Proportionality is an 

inherently quantitative and contrastive property of the relationships between clock mechanism 

components.  As such, showing it via a representation which conveys the quantities and the 

conditions across which the proportional relationship holds is appropriate.  The data graphs are 

used here to exemplify the kinds of relationships that particular system components have in 

knockdown conditions—e.g., proportional, fractional-proportional, etc.—and, as in Figures 4 and 
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5 above, these relationships are offered as part of the explanation for how compensation occurs 

in particular cases.   

  

The evidence and constraint views, which argue that data graphs play only the roles of 

questioning or expanding a mechanism schema, do not describe the case.  Baggs et al. do not 

offer proportionality and balance as new parts or operations to be added to the standard 

mechanism schema.  Indeed, it is hard to even make sense of them in terms of mechanistic 

posits, since they are adverbial (two quantities change proportionally or in a balanced way).7   

Nor are any of the current parts and operations questioned.  So, the role of the data graphs is not 

to modify the extant mechanism schema.  There is a sense in which the data graphs could be a 

spur to an extension of the schema.  Baggs et al., drawing on the broader literature in gene 

regulatory systems (Kafka, Levy, & Pilpel, 2006), note that in the particular instance of paralog 

compensation, there are several mechanisms that could underlie proportional relationships.  

Drawing on an analogy to developmental systems, they even hypothesize that there may be 

direct inhibitory influence by Per1 and Cry1 on their paralogs, which is lessened as mPer1 and 

mCry1 quantities decrease.  On the evidence and constraint view, the value of discovering 

proportional paralog responses depends on and is subsidiary to discovering the causal structure at 

work.  But Baggs et al. do not suggest at any point that the explanatory value of their data graphs 

depends on the specifics of the eventual “complete” mechanistic description.  They do not 

perform experiments to determine whether their hypothesis about the lower-level mechanism is 

correct, simply leaving it open as another hypothesis that could be tested.  And given the way the 

data graphs are employed in the investigation, it seems clear that proportionality and balancing 

will remain necessary for explaining compensation regardless of how this additional question 

comes out—whichever possible lower level causal structure turns out to be at work, the ERs of 

proportionality and balancing will play the exact same role in the explanation.  Moreover, for 

non-paralogous relationships, Baggs et al. do not even offer further mechanistic positing as a 

relevant consideration.  The relevant mechanistic organization is already known.   

 

So, the best reading of the case is that the data graphs are used to represent ERs, rather than as 

providing evidence or constraint for mechanistic posits.  In fact, it is arguable that in this case the 

standard mechanism diagram is what is providing the constraint.  Given what the standard 

schema says about the parts and operations in the mechanism, what patterns do the relative 

quantities of those parts exhibit such that they can implement compensation?  If this is right, then 

sorting some representations as falling solely into the “explanatory” box and others as falling 

solely into the “evidence/constraint” box is a bad description of practice.   

 

I am only claiming that data graphs play a representational role that is needed for explaining 

compensation.  This claim needs to be immediately distinguished from the claim that the data 

graphs, on their own and as such, are or constitute an explanation of compensation.  It is easiest 

to distinguish these points by extending a discussion of Craver’s regarding explanatory models to 

the current discussion of representation.  Craver (2006) argues that models that do not convey 

                                                            
7 In a loose sense, of course, these are facts about organization, since the quantities represented have effects at 

particular places (e.g., on the promoters of the genes they activate) over time.  While mechanists have not discussed 

ERs as part of organization, it is possible that the notion could be expanded to include representation of ERs.  This 

move would, however, constitute an acceptance of my point, since it requires accepting an explanatory role for some 

representations of QRs, above and beyond the evidence and constraint roles.   
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mechanistic organization are not explanations, because they fail to show the causal structure that 

produces the phenomenon.8  However, he then moves from this to the more substantial claim that 

mechanistic models are explanations, and that any explanatory role for other models consists 

solely in their helping to establish mechanistic ones.  This kind of argument makes a lot of sense 

on representational fundamentalism.  If we assume that one type of representation is the basis for 

explanation, then showing that some explanatory task cannot be completed by a particular type 

of representation suggests that they cannot constitute explanations.  But this kind of view simply 

does not describe the explanatory use of representations in the Baggs et al. case.  Baggs et al. do 

not offer the data graphs as a replacement or alternative for the well-understood mechanistic 

model.  Instead, they offer the graphs as representations conveying needed content not present in 

the representation of the accepted mechanism.   

 

This result, I submit, is incompatible with representational fundamentalism.  Rather than one 

type of representation being the basis of explanation, the current considerations suggest that 

distinct representations play distinct roles in explanation.  If representational fundamentalism is 

false, then we need an account of the relationship between the explanatory roles of different 

types of representation that neither makes one type a self-sufficient explanation, nor makes the 

explanatory role of one type depend entirely on that of another.  I offer the following definition 

of “dissociability” to fill this need: 

 

Dissociability:  The explanatory role of a representation-type R1 is dissociable from that 

of a representation-type R2, in explaining phenomenon P, if R1 (i) conveys content not 

representable in R2, and (ii) that content would remain necessary for explaining P even 

given changes to the content in R2.   

 

The Baggs et al. case, I claim, establishes that the explanatory role of data graphs is dissociable 

from that of mechanistic posits in this sense.  Condition (i) is evidenced in the fact that the 

standard mechanism schema does not convey the needed patterns.  Condition (ii) is evident in the 

fact that while one often could make further mechanistic posits related to (e.g.) proportionality, 

the explanatory value of the ERs does not depend on the outcome of that investigation.  That is, 

our detailed mechanistic understanding could change in several ways and several times without 

at all modifying the explanatory role and value of the ERs.   

 

So, while it is right to point out that data graphs do not discriminate between distinct possible 

causal structures, concluding from this that representations are only explanatory to the extent that 

they help to establish mechanistic posits is a mistake.  The ability of the data graphs to convey 

the needed pattern is based on their representational format, which is precisely what prevents 

them from representing mechanistic organization—they are simply playing a different role in the 

account.  Moreover, the notion of dissociable representations suggests that no one type of 

representation is likely to give a “complete” explanation of some phenomenon.  If the 

considerations given here are correct, we are likely to need multiple representations playing 

distinct roles to explain any particular phenomenon. 

 

                                                            
8 Craver is specifically talking about Hodgkin and Huxley’s dynamical model of the action potential, but it seems his 

argument would extend to any representation that does not represent mechanistic posits.   
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Dissociability is thus a weaker relation than either explanatory subsumption or explanatory 

independence.  Representational fundamentalism says that the value of non-fundamental 

representations in the process of giving explanations is subsumed by the explanatory value of the 

fundamental type that they eventually help to establish—i.e., that non-fundamental 

representations are only valuable to the extent that they help establish the fundamental 

representation.  But if the explanatory role of data graphs is dissociable from that of mechanistic 

posits, then their role is not subsumed by or reducible to the particular content provided by 

mechanistic posits.  This is far from saying that the two are unrelated, or that the data graphs are 

a self-sufficient explanation, independent of mechanistic considerations.  Obviously, the mRNAs 

discussed must be shown to be parts of the mechanism before ERs concerning them can be 

relevant.  Similarly, if the mechanism did not include multiple feedback loops, then no one 

would be motivated to look for ERs that balanced their quantities under varying conditions.  But 

this relationship is best construed as one of mutual constraint between data graphs and 

mechanistic posits, not one in which they are entirely independent or one in which all of the 

explanatory power is vested in one at the expense of the other (see section 4). 

 

While I have argued that the explanatory use of data graphs is dissociable from that of 

mechanistic posits, this is not quite sufficient to establish that they play a distinct explanatory 

role as such.  For instance, data representations might be dissociable from mechanistic posits but 

subsumed by some other type of representation.  Here I briefly discuss one possibility—the 

relationship between data graphs and causal graphs (Pearl, 1995, 2000).  Causal graphs comprise 

two elements: a qualitative network or path diagram symbolizing the causal connections between 

nodes, and a set of structural equations characterizing the nature of the influence between nodes.  

In fact, Baggs et al. do offer network diagrams that they extract from the relationships explored 

in the paper.  Moreover, they also test for the proportionality of the relationships by fitting 

equations to the data.  So, why are the data graphs themselves used in an explanatory way, rather 

than only being a stepping stone to a completed causal graph?   

 

Here are examples of the network diagrams compiled by Baggs et al.  The one on the left is for 

mClock knockdowns, the one on the right for mPer knockdowns (they only show graphs for one 

knockdown at a time, but a more complete graph could be compiled from the individual ones).  

 

 
 

Figure 6.  Network diagrams of responses to mRNA knockdowns.  From Baggs et al. (2009). 
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In the graph the labeled rectangles signify the mRNAs.  The mRNA labeled at the top is the one 

being studied via knockdown.  The edges are causal relationships; green boxes represent that the 

mRNA labeled was decreased in response to the knockdown, red that the mRNA increased (the 

blue and black dots signal whether the relationship had been previously published, and don’t 

concern us here).   

 

Let’s take the two aspects of a causal graph—the qualitative graph and the equations—in turn.  

First, the proportionality shown in the data graph is not included in the qualitative network 

diagram, meeting condition (i) of the notion of dissociability.  Condition (ii) is also met.  

Suppose we discovered that the causal graphs were different—involving more steps between 

interacting mRNA quantities, for instance.  This would certainly change the overall 

understanding of the system, but it would not modify the explanatory usage of the data graphs.  

Proportionality of compensatory relationships and balance between positive and negative loops 

would be important even if there were more or fewer steps in the pathways.  Since the 

explanatory role that the data graphs are playing could be played even if the graph were 

different, their status as explanations does not depend on the specifics of the causal graph.  The 

two are dissociable. 

 

Again, as above, I am not denying the importance of the causal graph for providing needed 

resources.  Baggs et al. characterize their network diagram as providing “a framework to uncover 

… biological relay mechanisms,” (2009, p. 0568) and this is at least superficially similar to 

Pearl’s characterization of causal graphs as “oracles for interventions” (2000, p. 22).  Moreover, 

there are certain explanatory tasks for which data graphs would be subsumed under the 

explanation given in a causal graph.  Consider Pearl’s discussion of the relationship between 

causal graphs and structural equations.  Pearl argues that the combination of the causal graph and 

the equation allows for predictive power under manipulations—if one has the causal graph and 

the equations right, one can predict the response of the effect variable under manipulations to the 

causal one.  However, the explanatory task in which the data graphs are employed in the Baggs 

et al. case is not simply to predict what each variable will do in response to manipulations.  

Instead, the particular types of relationships shown in the data graphs are used to give an account 

of how compensation comes about in the system.  This use is what renders the dissociability 

between the two kinds of representations.  If the goal were simply to determine the causal graph 

that can aid prediction of the outcome of manipulations, then the primary task would be to 

develop the graph (e.g., by mediating between alternative hypotheses about the structure of the 

graph), and any represented data would be used in the service of that project.  But since it is the 

particular quantitative patterns that are offered as explanatory representations in the Baggs case, 

this use is insulated from particularities in how the causal graph comes out.  The fact that both 

explanatory tasks are important does not mean that one should be collapsed into the other.    

 

What of the use of equations to test for linearity in the proportional relationships?   Doesn’t a 

linear equation provide a more powerful explanatory tool than the represented data?  It is worth 

noting, although not conclusive, that Baggs et al. do not offer the equations as explanations.  

Instead, they are backgrounded as simply another way of characterizing the relationships shown 

in the data graph (they count a relationship as proportional if the slope of the equation 

characterizing the data is close to one, and fractionally proportional otherwise).  Now, we might 

say that the data graphs are merely a visual convenience, standing in for the genuinely 
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explanatory equation.  It would be hard to know what that claim was based on, however, if not 

some substantive view of what representations are explanatory—for instance, that quantitative 

ones are universally more explanatory than qualitative ones—which is exactly what is in 

question.  How should we assess the issue? 

 

There is analogy to be made here to Pearl’s (2000) argument concerning why qualitative causal 

graphs are necessary, as opposed to simply representing causal relationships in equations.  He 

argues that the qualitative graphs supply representational resources that are distinct from those 

given in the equations—i.e., they show causal paths that are difficult if not impossible to keep in 

one’s head all at once, and that must be assumed anyway to make the equations meaningful.  A 

similar account can be given for the data graphs, vis-à-vis the equations.  They are used to show 

specific relationships between several components under specific conditions—i.e., it is not just 

proportionality between individual components under manipulation, but the way that those 

relative proportional relationships combine in specific situations to maintain balance between 

positive and negative loop gene products.  This information is not only not explicit in the 

equations;it would be extremely difficult to extract simply from looking at the equations 

characterizing the relationships.  But if we are willing to admit that causal diagrams—a 

qualitative type of representation—are explanatory in addition to the equations because they play 

a specific role, we should not balk at admitting an additional type of qualitative representation if 

it plays a distinct, clearly articulable role.  This is what I have tried to establish.   

 

There is further support for this picture in both recent philosophical work and results from 

cognitive science.  Shah, Mayer, and Hegarty (1999) have established that well-designed data 

graphs afford the recognition of trends in numerical relationships.  Stieff, Hegarty, and 

Deslongschamps (2011) have shown that, when reasoning about quantitative questions in 

chemistry, students make heavier use of data graphs showing patterns in quantitative 

relationships than equations modeling those patterns.  Now, these studies looked that the 

performance of undergraduates rather than practicing researchers.  However, in other work my 

colleagues and I (2014) have closely analyzed the use of data graphs during the development of 

mechanistic explanations by expert practitioners, and argue that looking for QRs and patterns in 

data is vital for developing an understanding of the organization of a system.  If these accounts 

are suggestive, then there is something to be gained in Baggs et al.’s use of the data graphs other 

than visual convenience.  The representations render the key relations of proportionality and 

balance discernible in a way not reducible to that given in the equations, which explains why 

Baggs et al. choose to represent the relationships in this format.  

 

I have offered an analysis of the explanatory practice in the Baggs et al. paper, and posited a 

clear explanatory role for the data graphs, which is dissociable from those played by other 

representations.  In the final section, I summarize the view of representation suggested here and 

discuss how it relates to other discussions in the mechanist literature.   

 

4.  Explanatory Relations and Mechanistic Explanation 

 

I have argued that distinct types of representation play dissociable explanatory roles, and that 

multiple representations are often necessary in explaining a phenomenon such as compensation.  

I have also claimed, that, in explanatory practice, the relationship of constraint between 
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representations is not unidirectional.  Sometimes data graphs do serve constraint and evidence 

roles.  But in other situations it is more accurate to say that a mechanistic representation 

constrains the search for ERs, as in the Baggs et al. case.  Which representation is providing the 

constraint versus which is representing a new explanatory fact depends both on what is known 

about the system and what question is being asked.  Recognizing this inspires a kind of 

contextualism about how representation relates to explanation (for a contextualist view of 

explanation writ large, see Van Fraassen, 1983).  This is exactly what we should expect if 

representational fundamentalism is false—if different representations can play different roles 

given what and how they represent, then different representations should come to the forefront in 

particular explanatory contexts.  Here, I will attempt to summarize the relative explanatory roles 

of data graphs and mechanism diagrams.  I will only discuss mechanistic diagrams and data 

graphs here, since the relationship between mechanism diagrams and causal graphs is both 

complex and slightly outside of the scope of this paper.9   

 

In section 2, I outlined some conditions that many mechanists require before a causal 

relationship is of use in mechanistic explanation—such as stability, invariance, directness, and 

specificity.  These properties, or some combination of them, go into most mechanists’ 

characterizations of what makes something an operation, and in keeping with the distinction 

between mechanistic diagrams and data graphs, the latter don’t represent anything about them.  

Data graphs are inherently bad at representing these properties, because their role of representing 

specific quantities in specific conditions renders them unable to generalize in the right way.  I 

thus propose that mechanism diagrams represent relations in the system regarding which a 

certain kind of epistemic work has been done—namely, differentiating the relationships in the 

system that are invariant, direct, specific (or some subset of these) etc., from those that are not.  

Since representations of QRs are poor at representing these aspects of the system, mechanism 

diagrams are developed to convey them.  That is, constructing and testing a mechanism diagram 

or schema involves pursuing a certain explanatory project with regards to the discovered entities 

and relationships in a mechanism.  When the explanatory context shifts, for instance to showing 

how a phenomenon like compensation is produced by the mechanism, the quantitative patterns 

represented in data graphs portraying QRs become relevant, resulting in their being represented 

as ERs.   

 

The foregoing makes good sense of the idea that the relationship of “constraint” between 

mechanism diagrams and data graphs is neither unidirectional nor constant across all explanatory 

contexts.  If one wants to know whether a part performs a particular operation, and whether that 

operation is direct, specific, etc., with regards to the other parts affected by it, then one collects 

data as evidence for those posits (as, e.g., in the case of the Bunger et al. result shown in Figure 

2).  However, the mechanistic posits can themselves in turn constrain the search for new ERs, 

such as those of balance and proportionality.  Sheredos et al. (2013) and Burnston (2013) have 

articulated a view of the cognitive role of mechanism diagrams for practicing scientists, on 

                                                            
9Mechanism diagrams and causal graphs share their usefulness for representing causal relations in the system being 

studied.  One way in which they significantly differ is in mechanism diagrams’ ability to represent spatial 

relationships.  Another is that causal graphs do not say anything specific about how the causal influence is enacted.  

This is perhaps why Baggs et al. say that their network diagrams are “not intended to be biochemically mechanistic” 

(2009, p. 0574). 
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which mechanism diagrams guide the search for new hypotheses, and this role fits nicely with 

the current perspective. 

 

I’d like to conclude by discussing the relationship between the points I’ve made here and the 

debates within mechanistic philosophy of science mentioned in the introduction.  At several 

points, those familiar with the mechanist literature may have wondered about the relationship 

between my discussion of patterns in data graphs and debates surrounding the roles of laws and 

generalizations in mechanistic explanation.  Some argue that operations are metaphysically and 

explanatorily fundamental in giving mechanistic explanations (e.g., Machamer, 2004); others 

that it is laws or generalizations (e.g., Leuridan, 2010).  I have made a claim about 

representations and their role in explanation, not about the metaphysics of mechanisms.  As such, 

I make no commitment as to the appropriate metaphysical category of ERs.  If it turns out that 

ERs are best construed as generalizations, then the representational arguments made here might 

provide support for the view that they are often necessary parts of explanation.  Note, however, 

that it would not provide an argument that they are fundamentally explanatory—i.e., more 

fundamentally explanatory than mechanisms.  The whole thrust of my argument has been geared 

towards disavowing any sort of representational fundamentalism, vis-à-vis explanation.  At best, 

the argument could support a view that representations of generalizations and representations of 

mechanisms are often both necessary in explaining a phenomenon (Tabery, 2004; cf. Weber’s 

“explanatory heteronomy,” Weber, 2008).  I do not in fact think that ERs are best described as 

either laws or generalizations, but instead simply as patterns exemplified by the particulars 

observed.  I cannot go into the argument now, however, and undertake it in detail elsewhere 

(Burnston, in prep). 

 

Finally, I noted in the last section that the relationship of dissociability between different 

representations is different from both subsumption and independence.  This is relevant to the 

broader discussion in the literature about how mechanistic models relate to other types. While 

some favor mechanisms, and insist that all other representations are subsidiary to mechanistic 

models in explanation, objectors to this view often attempt to describe situations in which a 

different type of model—perhaps a dynamical system or a network model—explains 

independently of mechanistic representations (or, at least, representations intended to 

functionally decompose the system being studied; Silberstein & Chemero, 2013).  I have 

stressed, however, that explanation is a function of combining different types of representations 

in different ways depending on the context.  As such there is no notion here that data graphs are 

explanatory “independently” of mechanism diagrams (or vice versa).  To the extent that models 

are representations, then, the current considerations suggest that the idea of looking either for 

fundamentally or independently explanatory models might be a bum steer.  If the kinds of 

considerations I have evinced are right, then explanation is a cooperation between different ways 

of representing a system, not a competition between representations or models for explanatory 

primacy.  Construing the question in the latter way does not describe the practice of explanation. 

 

5.  Conclusion 

 

Mechanistic philosophy of science has made large strides in reconstruing scientific explanation, 

partially by attending to the actual practice of constructing explanations and the representations 

that constitute them.  I have argued that a full account of explanatory and representational 
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practice in such fields as mammalian chronobiology requires admitting certain uses of data 

representations as genuinely explanatory—as representing explanatory relations.  Doing so has at 

least the potential to shift the focus in discussion of mechanistic explanation away from debates 

about which types of explanations are fundamental, to analysis of the nature of and relationships 

between different ways of representing biological systems.  Given that biology is 

representationally rich—there are many types of representations used in biology that I have not 

discussed—such a focus is a potentially fruitful direction for further research within the 

mechanistic perspective. 
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